The goal of Document-level Relation Extraction (DRE) is to recognize the relations between entity mentions that can span beyond sentence boundary. The current state-of-the-art method for this problem has involved the graph-based edge-oriented model where the entity mentions, entities, and sentences in the documents are used as the nodes of the document graphs for representation learning. However, this model does not capture the representations for the nodes in the graphs, thus preventing it from effectively encoding the specific and relevant information of the nodes for DRE. To address this issue, we propose to explicitly compute the representations for the nodes in the graph-based edge-oriented model for DRE. These node representations allow us to introduce two novel representation regularization mechanisms to improve the representation vectors for DRE. The experiments show that our model achieves state-of-the-art performance on two benchmark datasets. Read more: ACL web